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Isotropic to Nematic Phase Transition in F-actin
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Abstract — Like a few other rod-like and semi-rigid polyelectrolytes, filamentous actin (F-actin)
shows, respectively, an isotropic to nematic (I-N) phase transition and an aggregation to a
hexagonal liquid crystal followed by paracrystals at low and moderately high salt concentrations.
Its polyion characteristics, e.g., large bare diameter, imposing chain length, high molecular weight
per unit chain contour length and large electronic charge spacing along the chain contour, make
it stand out among the members of the family of rigid and semi-rigid lyotropic mesogens. The
first-order I-N phase separation has been explored, at the level of the second virial approximation,
for a rod-like model of the actin filament in a solution containing simple electrolytes such as KCl
and MgCl,. The calculation of concentrations in the coexisting isotropic and anisotropic (nematic)
phases, and of the order parameter in the anisotropic phase has been attempted by following the
approach of Stroobants et al. which takes account the repulsive but not the attractive interactions.
A criterion for the stability of the isotropic phase, according to Odijk, considers the second and
the third virial coefficients, and has been employed to describe the I-N phase diagram depicting
filament length versus actin concentration. The nature of the I-N phase transition, which has both
first-order and higher-order (continuous) parts, has been discussed.

Keywords : F-actin, isotropic phase, nematic phase, liquid crystal, paracrystals.

INTRODUCTION

Filamentous actin (F-actin) is a protein polymer occurring in muscle and non-muscle
cells of the eukaryotic type [1]. These filaments have important roles in the
maintenance of cellular shapes and motility. Each filament is formed by a
concatenation of globular G-actin protein molecules. The polymerization process
is typically initiated by a salt solution comprised of 100 mM KCIl and 2 mM
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MgCl,, the pH being maintained at about 7.0 with imidazole-HCI or tris-HCI
buffer. The uncontrolled polymerization leads to a very wide length distribution
of actin filaments. However, in the presence of gelsolin (a capping protein) the
filament length distribution is quite sharp [2].

Like other rodlike or semi-rigid polymer molecules, e.g., Tobacco Mosaic
Virus (TMV) [3], F-actin solution exhibits an isotropic- nematic phase separation
above a (low) threshold concentration [2]. This observation has been rationalized
with the statistical mechanical theory of rigid rods, due to Onsager (1949) [4, 5,
6], who attributed the appearance of a nematic phase to a balance between steric
pair interaction and the force due to the rotational thermal motion. The nematic
phase appeared at a low concentration due to the imposing length of the polymers,
and hence the probability of ternary and higher collisions is low. Thus, in the
cluster or virial expansion of the free energy only up to the second term is retained.
This is the so-called second virial approximation.

However, cylindrical rodlike polyelectrolytes in solution repel each other
electrostatically. In the presence of added salts like KCI and MgCl, (as in the
case of F-actin), the coulombic repulsion is screened. The interaction between a
pair of long charged parallel and skew cylinders can both be estimated from a
solution of the linear Poisson-Boltzmann equation under conditions of low salt
concentration (~0.1 M KCI) and low surface potential (25 mV or thereabouts).
The Onsager model [4] has been extended by Stroobants et al. [7, 8] to include
cases in which interacting colloid particles have electric double layers. These authors
showed that the isotropic-nematic transition cannot be described solely in terms
of an effective diameter, and that the twisting effect has to be taken into account.
The twisting effect serves to destabilize the liquid crystalline phase, moving it to
higher concentrations. However, in general, the stabilizing influence due to effective
(rod) diameter enhancement is supposed to dominate any destabilization due to
twisting [7].

Proteins are a very important class of biocolloid, amphiphilic in nature
containing considerable hydrophobic parts [9]. Hence protein-protein interaction
should include an attraction which occurs between hydrophobic surfaces [10]. This
long-range interaction has been attributed to weak long range, irrespective of the
chemical nature of the surface. Van der Waals attraction is rather short-range, and
especially important in describing coagulation of colloids, which is due to the
primary minimum in the potential energy versus inter-particle separation curve [11].

The long-range attraction is strong enough to enforce stability of a hexagonal
phase at low ionic strength. This has been observed to be the case for TMV [12]
as well as for F-actin [13]. Binary collisions between polyions are unaffected by
long-range attractive forces whereas the impact on ternary collisions is enormous.



Isotropic to Nematic Phase Transition in F-actin 179

These ideas have been used to derive a stability criterion for the isotropic phase
by Odijk [12], using the second and the third virial coefficients. The isotropic
phase becomes unstable with respect to isotropic-nematic phase separation,
aggregation to hexagonal LC phase, etc., when the third virial coefficient becomes
sufficiently negative due to the presence of long-range attractive forces.

The main purpose of this work is to discuss the isotropic-nematic phase
transition in F-actin solution, as a function of filament length and ionic strength
of the solution. When the average filament length, L = 2 mm, the phase transition
is first-order [14], and the approaches of Onsager and Stroobant et al. [4,7] may
be applicable in estimating coexisting concentrations and order parameter. However,
I-N transition in F-actin becomes apparently continuous for longer filaments.
Theoretical arguments based on the phenomenological Landau-deGennes approach
categorize the I-N transition as weakly first-order [5]. A hexagonal LC phase [13]
and bundling or paracrystals [15] are observed at moderately higher ionic strengths.
An attempt has been made to rationalize these observations and explain the I-N
phase diagram showing filament length (um) versus actin concentration (mg/ml)
in terms of the stability criterion alluded to above.

With the above introduction, we shall present summaries of the extension
of Onsager approach by Stroobant et al. followed by the stability criterion proposed
by Odijk. Finally, we shall present the results and the relevant discussion with a
conclusion.

I-N Phase Separation in Rodlike Polyelectrolyte : Repulsions Only — The
theoretical treatments considered in this work are restricted to monodisperse (i.e.,
all polymer molecules have identical lengths) systems. Above a critical concentration,
solutions of rod-like particles undergo a phase separation into an isotropic phase
and an anisotropic phase, coexisting in equilibrium. In the latter phase the particles
have a preferred orientation. In the presence of excess electrolyte, the electrostatic
repulsion between the rod-like particles influences strongly the formation of the
anisotropic liquid crystal phase. Onsager [4] already indicated that the effect of
electrostatic repulsion will be equivalent to an increase of the effective diameter.
This effective diameter (Deﬁ) will be dependent on the thickness of the electric
double layer and thus on the ionic strength. However, the electrostatic repulsion
also depends on orientation and thus the effect of the electrostatic repulsion will
be different in the isotropic phase from that in the anisotropic phase. The expression
for the Helmholtz free energy proposed by Onsager can be modified including
electrostatic repulsion with excluded volume interaction as [7]
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A’ is given by Eq. (Al.2) in Appendix I, and y, = 0.577215665....... denotes
the Euler’s constant. u°(T) is the standard chemical potential of the particles at
the temperature 7" in a solvent with chemical potential, p,; ¢c=N/Q is the number
density; k! is the Debye screening length; u and w’ are the unit vectors along
the two rods inclined at angle y (Fig. 1); and kg is the Boltzmann constant. In
deriving the above equation, the interaction between two cylindrical rods at an
inter-axial angle y has been taken into account (cf. Equations (A.1) and (A.2)).
The distribution function of rod orientation indicated by u is denoted by f(u).
Performing the integrals one eventually obtains the free energy in the isotropic
phase

AF; p°
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The second term in the parentheses on the right-hand side of Eq. (2) represents
the effect of the electrostatic interaction on the free energy. The contribution
can be interpreted as a change of the diameter of the rods by a factor

_InA"+y,+In2-0.5
kD

s

(3)
Hence the effective diameter of the rod-like particle can be written as
Doy = D(1+5) )
and the effective excluded volume
_T.2
beﬁ‘ - ZL Deﬁ‘ (5)

We can write the free energy in the isotropic phase as
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In the anisotropic phase we have,
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In Eq. (7) and (8) the <...>, suggests that the averaging has been done for the
anisotropic or nematic phase. The twist parameter / is the ratio of the Debye
length x x’! and the effective diameter Deﬂ, i.e.,

_ 1
B KDeﬁ” (9)

Using Equation (3) and results from Appendix I, it is easy to see that the expression
for & has a negative logarithmic term, e.g., -In x, in the denominator of Eq.
(9). This diverges to infinity as x — 0, i.e., as the solution becomes increasingly
devoid of small electrolytes. This means that # — 0, i.e., the hard rod problem.
In the isotropic state, p = 1 and 7 = 0. Concentrations of the coexisting phases
are found by applying the coexisting conditions, i.e., the equality of the osmotic
pressure (7'[1) and the chemical potential (u') in the two coexisting phases, i.e.,

LT =k Tc[l + beﬁcc(p+hl7)] (10)

u=pul + kBT(ln c+0y +2bypc(p + hn)) (11)

In order to find the coexisting concentrations ¢; and ¢, in the isotropic and
anisotropic phases, one has to solve the coexisting equations,
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ci{l + cl-} = ca{l +c, [pa + hna} (12)
Inc; +2¢; =Inc, +o0; + 2ca[pa + hna] (13)

The Onsager theory is known to become exact in the limit of axial ratio L/D — o
[4], and all the virial coefficients higher than the second tend towards zero in
this case. For lower axial ratios, the third and the higher virial coefficients become
non-zero. In attempting to apply the Onsager theory to a natural protein polymer
such as F-actin, one needs to modify the theory to include the electrostatic repulsion
between the double layers. This has the effect of lowering the axial ratio as a
result of rod diameter enhancement, as well as skewing the interacting rod axes
as measured by a twist parameter h = (kDeﬁ)‘l. The twisting effect serves to
destabilize the liquid crystal phase, shifting it to a higher concentration. However,
in practice, rod thickening effect seems to dominate the twisting effect.

Stability Criterion for the Isotropic Phase : Repulsion plus Attraction — The
above treatment of isotropic-nematic phase separation takes into account steric and
non-steric repulsive interactions only. However, it is clear that attractive interactions
are ubiquitous; hence the above model based on repulsive interactions only is in
a sense inadequate. In this section we summarize Odijk’s arguments showing that
the isotropic phase becomes unstable with respect to phase separation, gelation or
aggregation as the third virial coefficient becomes large as a result of long-range
attraction. It has already been noted that the effect of the electrostatic repulsion
will be equivalent to an increase of the effective diameter (Deff), which will be
dependent on the thickness of the electric double layer and thus on the ionic
strength. Two test polyions are prevented from approaching each other closer than
Deﬁc in view of the repulsive electrostatic force. This argument is legitimate even
when the macromolecules are enclosed in the confined oriented space,

y < p_1 E% (¢ is the decay length).

Configurations that are almost parallel give the largest contributions to the virial
coefficients. The second virial coefficient may be written as

B = Bel + BA (14)
where electrostatic contribution can be represented as [12],

T2
B, ~ZL Dy (15)

Using the definitions described by Eq. (3) and (4), the attractive contribution to
the second virial coefficient is given by
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where we have used flu) = f(u’) =1/4p, as is appropriate for the isotropic phase.
Here, as before, u and u’ are the orientational unit vectors along the two test
polyion long axes, and AR is the vector distance between their centers of mass
(Fig. 1). F, = exp(wy/kgl ) - 1, is the Mayer function (w, has been taken
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Fig. 1. The configuration of two rods of equal length (L) and diameter (D), skewed at an an
gle y. The distance between the centerlines is denoted by x; R, is the vector distance between
the centers of mass of the two rods.

from Eq. (A2.3)). Since parallel configurations are the most heavily weighted ones,
each of the two integrations over orientational variables gives 2m/p. Then, using
cylindrical polar coordinates one writes Eq. (16) as

an%B’iB
o O
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with JHHH= J'dX x[u‘leX““'X —ute™® —1 (18)
o0
Dejf/g
and u = LH/¢ ;, o = exp(Deﬂlf); and X = x/¢. (19)
Odijk [12] has shown that
J()=1(z)—e*/z+1/z7+1 (20)
o n
with z = u/a, and where [(z) = ZZ— (21)
nzln!n
Also, J(z) ~ e /z? (z=1) (21a)

Hence the relative attractive contribution to the second virial coefficient is

By _2&%(ula)

==
B0 L’Dyy

(22)

Unlike the second virial coefficient, the third virial coefficient is not separable
into purely electrostatic repulsive and attractive terms [12, 16]

C=Cy+tCyu+Cyy (23)

The first two terms represent purely the three body electrostatic repulsion and
attractive terms. The third term, C,; 4 is the mutual interaction term between
electrostatic repulsion and attraction among three rods. Odijk [12] expresses them
as

4DeﬁcBe21 )
Ce’:T ; Cqa=ByB, ; Cy=ByeH'?

The relative attractive contribution to C can be expressed as

Cy +Cel,A| L %’2 g H

= 2e€ a+ n;
C, 4D E (24)

ns =

The influence of attractive forces on the third virial coefficient is much greater
than on the second virial one, especially when z = g/ > 1. Hence under certain
conditions the third virial coefficient may be negative whereas the second remains
positive. There is a distinct possibility of the solution becoming unstable. If the
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osmotic pressure for an isotropic solution is given by

7 = kTl +Be+Cc® +.......... ) (25)
where ¢ is the number density, we require

om

—=20

Py (26)

for the solution to remain stable (the sign of equality indicating the onset of
instability). Now neglecting virial coefficients higher than the third, and using

B=(1-m)By; ; C=(0-N3)Cq 27)

on the basis of Eq. (22) and (24), we thus have the criterion for the onset of
instability

_D Dy 3 [P Dy
Y=z+%%(l_02)+z%g(pﬂl_%)zo (28)

where @ = mD /2)? Lc¢ is the macromolecular volume fraction.

Equation (28) agrees with that given in [12], except for the appearance of
M,, which Odijk neglected apparently to ensure a positive B. The sign of equality
applies to the onset of instability. The “greater than” sign indicates the stability
of the isotropic phase. It is applicable equally to phase separation, gelation or
aggregation, because all of these are governed by long-range attraction.

RESULTS

i) When attraction is not considered

Along the length of the F-actin chain, there are four electronic charges per nm
[15]. Then the surface charge density is

4e
o=-"% 2002 Cmp>2
DL Cm,

assuming 4 nm to be the radius of the actin cylinder and that the cylinder is so
long that end effects can be neglected. However proteins have ionizable surface
sites that are almost fully dissociated since the pK values of constituent amino
acids typically differ much from 7, the pH of the solution in the case of F-actin.
We know that the relation between the surface charge density ¢ and the surface
potential 4 can be conveyed by Grahame equation [16]. For the case of a mixed
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KCI+MgCl, electrolyte, the Grahame equation can be written as [16]

1
e AW v g
0=0.117 smh@sﬂ%KCI] +[MgCl,) % + exp@- 757 % (29)

where the concentrations in bulk [KCI] = |_K+]oo and [MgClz] = |_Mg2+Joo are
taken in units of moles/liter, ¢ in mV, and o in C/m?2. Equation (17) allows us
to calculate Y once o is known. In the case of F-actin, using o = 0.026 C m?2,
the surface potential of F-actin can be found from Grahame equation (17) as ¥
= 33.0079 mV. In that weak potential limit the linear charge density from equation
(15) of F-actin is v, = 1.6256 x 10% C/m.

Using the Onsager model modified by Stroobant et al. the results, given in
Table 1, pertain to an F-actin system where I-N phase separation is known to
occur [14]. The filaments, 2 mm long on average, are immersed in a solution
of concentration 15 mg/ml with excess 1-1 (100 mM of KCIl) and 2-1 (2 mM
of MgCl,) electrolytes. The Debye length is then 4 = k1 = 0.9429 nm. Taking
4 nm to be the radius of the actin cylinder, D, i has been found to be 10.12
nm, on the basis of Eq. (4) (using the full series for K;(xD/2) from
MATHEMATICA 4.1) and (Al.2). From Equation (9) one then obtains 2 =
0.0932.

TABLE 1

Convergence of the Concentrations, Order Parameter S, and Orientation-Dependent Free Energy
Terms of the Coexisting Isotropic (c;) and Anisotropic Phase (), Osmotic Pressure, Chemical
Potential, for the F-actin system, using the expansion of siny in Legendre Polynomials
P2n(cos y),Truncated atn=7,8=< P2n(cos9) >,

C; Cq N o P n 7z1 yri

3.52 4.48 0.809 1.70 0.54 0.28 15.89 8.29

¢ and c, are in unit of 1/DL2; m and g are in unit of kBT.

ii) When attraction is considered

Including attractive interaction is trickier since denser parallel alignment is disfavored
in the repulsive case while being favored in the attractive case. This implies that
higher virial coefficients may exceed the second in this case, complicating the
calculation very much. For the F-actin system, long-range attraction is obviously
important.
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Fig. 2. I-N phase boundary of F-actin has been constructed with data from references, [14] and
[20].

We cite an example of application of Eq. (28) to I-N phase diagram (Fig.
2) of F-actin depicting average filament length in microns versus actin concentration
in mg/ml. In Fig. 3 left hand side of Eq. (28) has been plotted as a function of
polymer length L for H = 0.005. Since H does not depend on L (cf. Eq. (29)),
it is of some interest then to see how Y, i.e., the left hand side of Eq. (28)
behaves as a function of L (Fig. 3). It is clear that ¥ does not take on a negative
value for any value of z = /o in the practically realizable L range of 1 to 70
um, so long as z << 1, becoming insensitive to L variation in the range ~ 20
- 70 um. However, for 2 um long filaments which produce a phase separation
into isotropic and nematic phases at a concentration of 15 mg/ml [14], an upper
bound for H can be obtained from Eq. (28) at z = 12.45, which corresponds to
H = 0.1825. This is where an isotropic-nematic phase separation (tactoid formation
followed by phase separation) occurs [14]. Using Eq. (25), m; ~ 2.5 is obtained,
since iy ~ 20 is established experimentally [12]. The following parameters
pertaining to F-actin have been used for the construction of Table II : the
bare diameter D = 8 nm, the molar mass per unit contour length,



188 Chakrabarti and Das

concentration = 2mg/ml .
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Fig. 3. Plot of left hand side of Eq. (28) as a function of polymer length (L) (in m). H =
0.005 has been used for this calculation.

M/L = 15.17 kg/mol nm [20], the Bjerrum length Q@ = 0.714 nm at room
temperature, and charge spacing 0.25 nm per electron charge [2]. A 36 nm long
(pitch) F-actin chain has 13 G-actin moieties, each having a mass of 42 kD. Table
IT shows critical H and hy (i.e., the H and 7; at which Y becomes equal to
zero) values for the onset of instability seen in F-actin solution, e.g., isotropic-
nematic phase transition.

The variation of total interaction energy,

_Wep  Wyp
kpT  kgT

with centerline separation x (m) have been compared in Fig. 4, for F-actin solution
with average filament length 2, 4 and 10 gm with electrolyte concentrations :
100 mM KCI and 2 mM MgCl,. Table II gives the critical H values for the
different filament lengths chosen above. For a somewhat higher concentration of
electrolytes, e.g., 150 mM KCI and 10 mM MgCl,, a hexagonal LC phase results
leading to a six-fold increase in interaction [11].
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Fig. 4. Schematic diagram of interaction energy (W) versus inter-rod distance x (in m). The mini-
mum responsible for isotropic-nematic phase transition for Debye length a, ¢ : 0.9429 nm; with
electrolyte concentration as 100 mM KCI and 2 mM MgCl, and for Debye length b : 0.72333
nm caused by the electrolyte concentration as 150 mM KCI and 10 mM MgCl,.

TABLE 2

Critical H for isotropic to nematic phase transition in F-actin solution with Debye screening length
A = 0.9429 nm has been determined from Eq. (21), (21a) and (28) using MATHEMATICA
4.1; with salt concentration KCl : 100 mM and MgCl2 : 2 mM and effective diameter of the

filament is Dejf = 10.12 nm.

n, (M) p(mg/ml) I(um) 9, 7 H
0.106 4.0 10.0 0.007984 14.4778 0.04334
0.106 8.0 4.0 0.015968 7.82294 0.09438
0.106 15.0 2.0 0.02994 4.66228 0.166907
DISCUSSION

The use of the second virial approximation is tenable for the approaches of Onsager
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and Stroobant et al. where predominantly repulsive interactions are involved. At
present no reliable measurement of order parameter in the F-actin system is available
to be compared to our estimate. Real systems such as F-actin, however, admit of
attractive interactions also, particularly at higher ionic strength. The third and higher
virials then may become comparable to or greater than the second virial, leading
to a breakdown of the second virial approximation. Under this condition, an
aggregation to a hexagonal phase [13] or bundling (paracrystals) [15] is a distinct
possibility.

The attribution of the long-range attraction to just hydrophobic interaction
is somewhat questionable since Van der Waals forces also may have a contribution.
However, we have tried to keep the mathematics tractable. Also, at low salt
concentration, hydrophobic interaction should have the upper hand [12]. The
coordinates from the I-N phase diagram (Fig. 2) appear to fit Eq. (28) with a
single value of H.

As pointed out in section I, the prediction of the phenomenological Landau-
deGennes approach is that the I-N transition is weakly first-order. Mean-field theory
does not describe it fully, and fluctuations do play an important role [5]. Since
actin filaments are each a few microns long, the correlation length near the I-N
phase boundary is likely to be a few hundred microns, and a physical gel is actually
obtained [13]. The Onsager and Stroobant theories deal with phase separation since
only repulsive interaction is involved. Attractive interaction may cause a pre-
transitional ordering of the filaments, inducing a continuous transition. A continuous
I-N transition cannot definitely be ruled out [5, 14].

CONCLUSION

We conclude that in I-N phase separation the attractive part of the second virial
coefficient is less than its electrostatic repulsive counterpart in magnitude, keeping
the net second virial co-efficient positive. However, the attractive part of the third
virial coefficient is significantly larger than its electrostatic repulsive counterpart
so that the net third virial co-efficient is negative. As the present study suggests,
the I-N phase boundary may be reconciled with a model showing an attractive
term dependent on few parameters. Refinements like including Van der Waals
contribution may be attempted in future.

APPENDIX I : INTERACTION BETWEEN CHARGED RODS

Since the second virial coefficient is determined by the contact between the outer
parts of the double layers, one can approximate the interaction between the line
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charges, at the shortest distance x and mutual angle ¥ in the Debye-Hiickel limit
by [17],

2 —kx —Kk(x—
Wel B 27-[VeﬁQe Are K(x—D)

kgT K siny - siny (ALD)
21v3. Qe P
where A' = V72 (A1.2)
K

and the Bjerrum length, 0 = e2/4n80£kBT , € being the dielectric permittivity.

For low surface potential, Equation (A1l.1) holds at all distances x > D/2.
In that weak potential limit, we have

v = 210
eff = -
xk, HPH (A1.3)
02 O

where o is the surface charge per unit area of the cylinder, given by v2x, v
being the actual linear charge density, and K| is the first order modified Bessel
function of second kind. For thin (xD > 1) double layer, one obtains the leading
term A’ ~ 8v2Q/ Dk?*. Thick (kD <1) double layers give 4" ~2m/?Qkx~' on
the basis of a series expansion [18].

Now, the total cluster integral

B(yv)= Bs(y)+ Bus(v)

has a steric part given by B(») = - L2D sin y and a non-steric part given by
B, =2L*sin yI(e_Wfl BT 1yax
D

= -2k % siny[In(A' /siny) +y, + E;(A' /siny)] . (Al.4)

7, = 0.577215... is the Euler constant, and E; is the exponential integral [15].
For A’ > 2, the argument of E; is larger than 2, in which range the exponential
integral may be neglected. Now the mutual interaction energy between two parallel
rods separated by inter-axial distance Az is [12, 19],
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(rKD)LB 182 ][ ke
o L0 CLensLysld (A1.5)

w ) s
el.p = Dy L

eﬁ is the effective diameter which scales approximately as the Debye length
A= . Az is the distance between the centers of mass of the two rod-like
polylons along the z-axis. The electrostatic energy is purely exponential in separation
and decrease with increasing distance between the centers of mass of the two rods.

APPENDIX II : ATTRACTIVE INTERACTION BETWEEN TWO RODS

The long-range attraction between hydrophobic surfaces in polyions has been studied
by colloid scientists [12]. It is asserted to be weak but of long-range, with
potentially important contribution to phase transitions, etc. A brief quantitative
description of this interaction is given below.

The area of interaction for two crossed cylinders in the limit D/2 << £,
is independent of cylinder radius D/2 and scales as &2 if one assumes that a polyion
perturbs the surrounding water over a distance of order & (a decay length of about
14 nm) by its mere presence. Furthermore, it is conceivable that the influence of
the electric double layer on the attraction is altered by the fact that D/2 is no
longer much greater than £ so this might introduce a power law x™ with m; #1,
(x"! is the Debye screening length). For cylinders skewed at an angle y, the area
of interaction is inversely proportional to sin y (Fig.1). Therefore, for a
monodisperse suspension of rod-like macromolecules each of length L and diameter
D, the attractive interaction between the cylinders is [12]

WA He—x/f H'e_(x_D)/E q_ E
=-— =- - ; yzp =—-<I (A2.1)
kpT sin y siny L
. H:i(a+f)é_(ml+l)ex
with P p G (A2.2)
H' =HeP'¢

where A, a coupling constant, has been found to be about 20. Eq. (A2.1) breaks
down when the polyions are almost parallel. Then we have
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Wyq _ | ‘7'| X _l—é
—2 =-pH - 1 - < =_2 - < <
vor P E LE“%E% ysp L,L—AZ—L (A2.3)

One of the rods is placed along the z-axis of a cartesian co-ordinate system

REFERENCES
1. B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts and J. D. Watson, Molecu-
lar Biology of the Cell, Garland, New York (1998).
A. Suzuki, T. Maeda and T. Ito, Biophys. J. 59, 25 (1991).
J. D. Bernal and I. Fankuchen, Nature 139, 923 (1937).
L. Onsager, Ann. N. Y. Acad. Sci. 51, 627 (1949).

P. G. deGennes and J. Prost, “The Physics of Liquid Crystals”, Clarendon,
Oxford (1993)

6. M. Doi and S. F. Edwards, “The Theory of Polymer Dynamics”, Clarendon,
Oxford (1986).

7. A. Stroobants, H. N. M. Lekkerkerker and T. Odijk, Macromolecules 19, 2232
(1986).

8. A. Donald, A. Windle and S. Hanna, “Liquid Crystalline Polymers”, ond e
Cambridge University Press, Cambridge (2006);

9. C. Tanford, The Hydrophobic Effect, Wiley, New York (1980).

10. J. L. Parker, D. L. Cho, P. M. Claesson, J. Phys. Chem. 93, 6121 (1989); H.
K. Christenson, P. M. Claesson, J. Berg and P. C. Herder, J. Phys. Chem. 93,
1472 (1989).

11. E. J. W. Verwey and J. TH. G. Overbeek, Theory of the Stability of Lyopho
bic Colloids, Dover Publications, Inc., Mineola, New York (1999).

T. Odijk, Macromolecules 27, 4998 (1994).

13. P. Das, J. Roy, N. Chakrabarti and S. Basu, J. Chem. Phys. 116, 9028 (2002).

14. J. Viamontes, P. W. Oakes and J. X. Tang, Phys. Rev. Lett. 97, 118103 (2006).

15. J. X. Tang and P. A. Janmey, J. Biol. Chem. 27, 8556 (1996).
P
S
J

wn A~ W N

12.

16. P. V. Schoot and T. Odijk, J. Chem. Phys. 97, 515 (1992).

17. S. L. Brenner and V. A. Parsegian, Biophys. J. 14, 327 (1974); M. Fixman and
. Skolnick, Macromolecules 11, 863 (1978).



194

18.

19.
20.

Chakrabarti and Das

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Na-
tional Bureau of Standards, Washington (1964).

G. J. Vroege and H. N. W. Lekkerkerker, Rep. Prog. Phys. 55, 1241 (1992).
C. M. Coppin and P. C. Leavis, Biophys. J. 63, 794 (1992).



